2023 ACVS Surgery Summit Louisville KY, October 12–14, 2023

Evaluating the benefit and tolerability of an intraarticular injection of a collagen-elastin hydrogel microparticle (CEHM) into the stifle joint of dogs with suspected cruciate ligament rupture

Erik B. Kleeman, Bridger Veterinary Specialists Samuel Stewart, Ethos Veterinary Health Science Consultancy

BACKGROUND

Cranial cruciate disease (or CCD) remains one of the most common causes of canine pelvic limb lameness observed in clinical practice today. Surgery remains the treatment of choice for the best return to function. Several intraarticular injection products are currently being investigated to maintain patient comfort and quality of life for non-surgical patients. CEHM, a collagen-elastin biomatrix on a heparin scaffold, has shown to be effective when utilized for osteoarthritis and degenerative joint disease.

BIOMATERIAL

Collagen-Elastin Hydrogel Microparticles (CEHM) is commercially available as Spryng with OsteoCushion Technology and was previously referred to as Mastergel Hydrophilic Biomaterial (MHB). CEHM product is formulated with a collagen, elastin bio-matrix on a heparin scaffold and is classified as a medical device, NOT a therapeutic. The biomaterial has already been proven to be effective when utilized for osteoarthritis and degenerative joint disease.

STUDY OBJECTIVE

Determine if CEHM injection will help alleviate acute pain and loss of function associated with partial or complete unilateral cranial cruciate disease, despite the kinematic disadvantages of lacking a surgically altering procedure to the stifle.

METHODS AND EXPERIMENTAL DESIGN

Inclusionary criteria

 > 6 mo with unilateral partial or complete CCD, determined by physical and orthopedic examination, Stifle radiographs to confirm CCD.

Null hypothesis

• The true response rate is 10% will be tested against a one-sided alternative that the true response rate is 25% of the study population.

Simon's Two Stage Study Design (Simon, 1989)

- Initial cohort: 22 patients with unilateral CCD.
- Second cohort: additional 18 patients enlisted (total of 40) if proven effective.

Primary endpoint

• Response rate from day 1 to day 28 as measured by the modified Glasgow Composite Pain Score (mGCPS), in which a reduction in the mGCPS by 25% or greater would be considered a beneficial response.

Secondary endpoints

- Change in mGCPS from Day 1 to all subsequent study days.
- Change in visual lameness score (VLS) and the Liverpool Osteoarthritis in Dogs (LOAD) survey score from Day 1 to all other subsequent study days.

Lameness Grade	Definition	Score Variable	Grade Range
0	Normal	Posture	0 – 3
<u> </u>		Lameness at walk	0-4
1	Mild subtle lameness with partial weight bearing	Lameness at trot	0 - 4
		Willingness to raise	0-4
2	Obvious lameness with partial weight bearing	Cranial drawor	0_2
		Cranial drawer	0-3
3	Obvious lameness with intermittent weight bearing	Tibial thrust	0 – 3
		Pain on extension	0 – 3
		Pain on full flexion	0-3
4	Full non-weight bearing		0-1
		Pain following orthopedic	0-3

exam

RESULTS

On average there was significant improvement in all of the clinical variables throughout the study period (Table 1). The table notes the range for the gradual improvement of mGCPS, VLS and LOAD scores were statistically significant throughout the study.

Clinical Variable	Day 1	Day 3	Day 7	Day 14	Day 21	Day 28	Day 56	Day 84	P-value
n	43	41	41	41	41	40	35	24	
Average mGCPS (Range)	4 (1 – 10)	N/A	3 (1 – 10)	3 (0-8)	3 (0-8)	3 (1 – 10)	3 (0 – 7)	2 (0 – 7)	0.0063
Average VLS (Range)	16 (5 – 32)	N/A	14 (2 – 23)	14 (2 – 27)	12 (2 – 30)	13 (3 – 27)	12 (0– 27)	10 (0-26)	<0.0001
Average LOAD (Range)	19 (0 – 32)	20 (0 – 36)	17 (1 - 31)	17 (0 – 32)	15 (0 – 27)	13 (0 – 25)	14 (0 - 37)	12 (0 - 37)	<0.0001

Table 1: mGCPS Day 1 to subsequent study days

P-values calculated using general linear mixed models

Table 2: Multiple comparisons of mGCPS

Comparison Days	Mean Difference	95% CI of Difference	Adjusted p-value
Day 1 vs. Day 7	-0.65	-1.29 to -0.01	0.0430
Day 1 vs. Day 14	-0.74	-1.56 to +0.08	0.0896
Day 1 vs. Day 21	-0.61	-1.36 to +0.13	0.1384
Day 1 vs. Day 28	-1.11	-1.97 to -0.26	0.0060
Day 1 vs. Day 56	-0.72	-1.71 to +0.27	0.2294
Day 1 vs. Day 84	-1.57	-2.52 to -0.61	0.0006

P-values calculated using Dunnett's multiple comparison test

Table 3: Multiple comparisons of VLS

Comparison Days	Mean Difference	95% Cl of Difference	Adjusted p-value
Day 1 vs. Day 7	-2.54	-5.26 to +0.44	0.0030
Day 1 vs. Day 14	-2.47	-5.87 to +1.53	0.0361
Day 1 vs. Day 21	-3.69	-5.95 to -0.44	0.0002
Day 1 vs. Day 28	-3.5 9	-6.89 to +0.34	0.0018
Day 1 vs. Day 56	-4.51	-11.12 to -1.16	0.0004
Day 1 vs. Day 84	-6.57	-13.95 to -2.63	<0.0001

P-values calculated using Dunnett's multiple comparison test

RESULTS (CONT.)

Table 4: Multiple comparisons of LOAD

Comparison Days	Mean Difference	95% Cl of Difference	Adjusted p-value
Day 1 vs. Day 3	+0.1310	-2.335 to +2.60	>0.9999
Day 1 vs. Day 7	-2.883	-5.535 to -0.23	0.0279
Day 1 vs. Day 14	-2.784	-5.346 to -0.22	0.0281
Day 1 vs. Day 21	-4.869	-7.473 to -2.27	<0.0001
Day 1 vs. Day 28	-6.006	-9.059 to -2.95	<0.0001
Day 1 vs. Day 56	-5.750	-9.515 to -1.99	0.0012
Day 1 vs. Day 84	-6.929	-11.28 to -2.58	0.0007

P-values calculated using Dunnett's multiple comparison test

CONCLUSIONS AND FUTURE STUDIES

- Final combined cohort's response rate: 22/40 (55%, 95% CI: 40%-69%)
- Null hypothesis: Rejected, Alternate hypothesis: Accepted
- The CEHM injection appears to be a reasonable, non-invasive alternative for patients with CCD when patient and/or owner factors preclude surgical intervention.
 - The study noted a reduction in all of the measured parameters (mGCPS, VLS, and LOAD scores) for responders resulting in clinical improvement across all time points.
 - The CEHM injection appears to be a reasonable, non-invasive alternative for patients with CCD, where owners are not pursuing surgical intervention.
- This preliminary data supports additional, larger prospective trials and studies to evaluate Spryng injections for medically managing patients with CCD.

ACKNOWLEDGEMENTS

Ethos – Wisconsin Veterinary Referral Center Samuel Stewart DVM, DACVECC – Ethos Veterinary Healthy Science Consultancy Garrett Tougas – Ethos Veterinary Healthy Science Consultancy PetVivo, Inc. Bridger Veterinary Specialists